If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+4d=5
We move all terms to the left:
d^2+4d-(5)=0
a = 1; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·1·(-5)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*1}=\frac{-10}{2} =-5 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*1}=\frac{2}{2} =1 $
| 5/8v=9 | | 3x+2(3x-5)=7x-4 | | 5x+5=3x-10-5x | | 1(s-2)=8 | | 3/2(7/3n+1/2)=3/2 | | 4000=240/x | | a-2/a+3-1=3/a+2 | | 38-x=82 | | 5x25+50=7x25 | | 2x=9.6^8 | | x=180-(3x=90) | | 3^x+4=27^x | | 5x-15x=20 | | 0.5x=1.2+1.4 | | 2x²×4x⁴=512 | | 5(t+4)=8 | | 2x+4|=|x-5| | | 8=2+3(t+4) | | -3(y+5)+12=-21 | | -6+u/5=-16 | | -5(3t-2)+9=3t-6 | | (5a+3)/4=7 | | y²-10y+21=0 | | 3(2x-3/4=3x+6 | | 12.5(r-1)=2(r-4)-6 | | 65=4b+5. | | 2t=124 | | 8f+150=6f+150 | | 10p(p+2)+3(p–3)=5 | | m+2m+3+3=3(m+2) | | (x-1)²-24=0 | | 5^7x-28=2^7x-28 |